Data sheet HV static capacitor bank

1. GENERAL DESCRIPTION OF THE CAPACITOR BANK

1.1. GENERAL DATA

This offer details the technical specifications of an automatic capacitor bank for reactive energy compensation on a 5.5 kV and 50 Hz electrical network.

The capacitor bank will give 1,400 kvar at 5.5 kV at the electrical frequency of the network.

The general layout, global dimensions and included equipment are shown in the schematic:

DOS18003: Capacitor battery, 1.400 kvar at 5.5 kV.

The following tables show the most important data concerning the capacitor battery and the network.

GENERAL NETWORK DATA	
Network voltage	5.5 kV
Insulation level	7.2 kV
Ind. frequency test voltage	20 kV eff.
Shock test voltage (1.2/50 us)	60 Kv crête
Frequency	50 Hz
Short circuit current	- kA

GENERAL DATA CAPACITOR BANK		
Power to the network	1.400 kvar	
Rated power	1.400 kvar	
Rated voltage	5.5 kV	
Network voltage	5.5 kV	
Frequency	50 Hz	
Regulation	1.2.2.	
Step number	4	
Rated power step	200+400+400+400 kvar	
Installation	Interior	
Protection degree	IP 23	

The capacitor bank is made with the following characteristics and components:

Cabinet		
Degree	IP23	
Supporting chassis materials		
Central unit	Electrogalvanized steel	
Cabinet	Electrogalvanized steel	
Paint		
Color	RAL 7035	
Accessories	Anti-condensation radiators Thermostats	

1.2. DESCRIPTION OF COMPONENTS.

Below is a brief description of the basic components that compose the capacitor bank.

LV control cabinet

The capacitor bank will have a basic voltage cabinet for the signals and manoeuvre and protection elements. The auxiliary sources for each element will be:

Components	Voltage
Contactor	125Vcc (+10% tolerance)/ 230 Vac.
Auxiliary circuit (lighting, heating resistances heating, ventilation)	230 Vac

General cabinet

The metal cabinet is self-transportable for the assembly of the articles above and designed for interior installation, the degree of protection is IP 23. The capacitor bank is built with profiles and removable panels in electro-galvanized steel and painted in RAL 7035. The entrance of the power cables will be made through the inferior part of the battery, as well as the cables for the control box/auxiliary contacts. Bar support with resin insulators.

*Approximate dimensions of the capacitor battery, if you need other dimensions kindly (they will be confirmed in case of firm command):

Height:	2250 mm
Width:	5000 mm
Depth:	1100 mm

Capacitors

The battery is composed by three-phase capacitors, all impregnated with JARYLEC biodegradable dielectric liquid, non-PCB fluid with high insulation resistance to ensure excellent electrical performance. The capacitors are manufactured with all-film technology, with very low dielectric losses, which offers us a long life. Internal discharge resistors are also incorporated.

Maneuvering

The automatic batteries have contactors for each step. The means used to avoid arcing is vacuum, which offers us an excellent control of capacitive loads and offers us a higher number of maneuvers compared to the circuit breaker.

Protection

HPC fuses are included to protect capacitor batteries and associated equipment from short circuit. They protect against the thermal and electromagnetic effects of high short-circuit currents by limiting peak current values and interrupting currents within milliseconds.

Shock inductances

Each step of the offered automatic battery will be constituted with shock chokes for the limitation of current transients during the connection of the capacitors. As mentioned the main function of the chokes is to limit below 100 times the nominal current of the peak value at each switch-on.

Single-phase power capacitor		
Electrical characteristics C1		C2
Power	200 kvar	400 kvar
Voltage	5.5 kV	
Frequency	50 Hz	
Insulation level	28/75 kV	
Tolerance	-5/+10%	
N° of terminals	3	
Internal discharge resistances	75V/10 minutes	
Dielectric losses	<0,2 W/kvar	
Class T ^a	Class C (-40/50°C)	
Average maximum temperature	40 °C	
Permissible overvoltage	10% (12h en 24 each day)	
Allowable overcurrent	30%	
Standards	IEC 60871-1 et IEC 60871-4	
QUANTITY (units)	1 3	
Constructive characteristics		
Dielectric	Polypropylene film	
Liquid dielectric	Biodegradable (non PCB)	
Internal capacitor protection	Fuse + protection pressure switch	
Tank material	Stainless steel	
Terminals	Porcelain	
Color	RAL 7035	

2.3. COMPONENTS

The principal components for each tep and their function are :

No-load contac	ctor	
Electrical characteristics	CO1	4
Rated current:	400 A	
Rated voltage:	7.2 kV	
Frequency:	50/60 Hz	
Insulation level:	20/60 kV	
Dielectric:	À Vide	
Breaking current:	4 kA	
Medium excitation:	Continue	
Auxiliary source:	125 Vcc / 220Vac	
Auxiliary Contacts:	3 NO + 3 NC	
QUANTITY (units)	4	

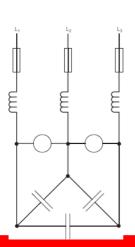
Dam ping inductances		
L1	L1	L 2
Rated current	50 A	100 A
Rated inductance	350 μΗ	100 μΗ
Encapsulated	Resin	Résin
Core	Air	Air
Thermal current	43·In/s	43·In/1s
Dynamic current	2,5 - It	2,5∙t
Temperature category	Class B	Class B
Maximum temperature	40 ºC	40ºC
Fixings	M16	M16
Color	RAL 8016	RAL 8016
Standard	IEC 60289	IEC 60289
QUANTITY (units)	3	9

	Fuses	
Electrical characteristics:	FU 1	FU 2
Rated current	40 A	80 A
Rated voltage	7.2 kV	7.2 kV
Rated breaking current	63 kA	63 kA
Minimum breaking current	280 A	600 A
Fuse base	Included	included
Switch Micro breaker	Included	included
QUANTITY (units)	3	9

3.3. STANDARDS

The capacitor bank and its components have been designed, manufactured and tested in accordancith he following standards:

HV capacitors	IEC 60871-1&2 et IEC 60871-4
HV Contactors	IEC 60420/ IEC 60470
Shock chokes	IEC 60289
HPC fuses	IEC 60549

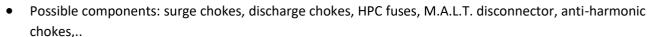

2. Wiring of the batteries

2.1. Delta wiring

Fixed type - Delta mounting

This type is used for low power batteries with a nominal voltage lower than 12 kV.

Maximum voltage: 12 kVPuissance maxi: 2500 kVAr



- Installation : intérieure ou extérieure
- Composants possibles : selfs de choc, selfs de décharge, fusibles HPC,
- sectionneur de M.A.L.T, self anti-harmoniques,...
- Dimensions maxi (mm): 2000 x 2000 H = 2200

Type fixe avec contacteurs - Montage triangle

Tension maxi: 12 kVMax. power: 2500 kVAr

• Installation: interior or exterior

• Maximum dimensions i (mm) : 2000 x 2000 H = 2200

2.2. Double star wiring

This type of wiring is suitable for batteries of all powers and voltages (single-phase capacitors are subject in this case to single voltage).

An unbalance protection (transformer and current relay) permanently controls the unbalance intensity between the two neutral points and, in case of internal faults of a capacitor, opens the switching organ of the battery.

Maximum voltage: 36 kV

Maximum power: 20000 kVAr

• Installation : interior or exterior

• Installation: interior or exterior

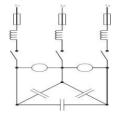
 Composants possibles : selfs de choc, selfs de décharge, relais de déséquilibre,TC de déséquilibre...

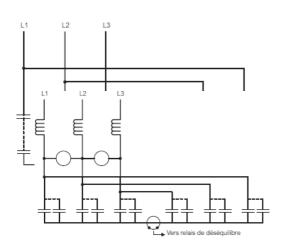
• Maximum dimensions (mm): 3500 x 2000 H = 4000

2.3. Fixed type with chokes - Double star mounting.

Maximum voltage: 24 kV

Maximum power: 5000 kVAr


Installation: interior or exterior


Possible components: surge chokes, discharge chokes, unbalance relays, unbalance CTs...

Maximum dimensions (mm): 2500 x 2000 H = 2200

2.4. H-wiring:

This type of wiring is intended for single-phase MV batteries and three-phase HV batteries of high power. In the case of three-phase batteries, the unbalance is controlled on each phase. This unbalance control system can be applied to both star and delta batteries.

